Manifold splines with a single extraordinary point
نویسندگان
چکیده
This paper develops a novel computational technique to define and construct manifold splines with only one singular point by employing the rigorous mathematical theory of Ricci flow. The central idea and new computational paradigm of manifold splines are to systematically extend the algorithmic pipeline of spline surface construction from any planar domain to an arbitrary topology. As a result, manifold splines can unify planar spline representations as their special cases. Despite its earlier success, the existing manifold spline framework is plagued by the topologydependent, large number of singular points (i.e., |2g − 2| for any genus-g surface), where the analysis of surface behaviors such as continuity remains extremely difficult. The unique theoretical contribution of this paper is that we devise new mathematical tools so that manifold splines can now be constructed with only one singular point, reaching their theoretic lower bound of singularity for real-world applications. Our new algorithm is founded upon the concept of discrete Ricci flow and associated techniques. First, Ricci flow is employed to compute a special metric of any manifold domain (serving as a parametric domain for manifold splines), such that the metric becomes flat everywhere except at one point. Then, the metric naturally induces an affine atlas covering the entire manifold except this singular point. Finally, manifold splines are defined over this affine atlas. The Ricci flow method is theoretically sound, and practically simple and efficient. We conduct various shape experiments and our new theoretical and algorithmic results alleviate the modeling difficulty of manifold splines, and hence, promote the widespread use of manifold splines in surface and solid modeling, geometric design, and reverse engineering. c © 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
Manifold T-Spline
This paper develops the manifold T-splines, which naturally extend the concept and the currently available algorithms/techniques of the popular planar tensor-product NURBS and T-splines to arbitrary manifold domain of any topological type. The key idea is the global conformal parameterization that intuitively induces a tensor-product structure with a finite number of zero points, and hence offe...
متن کاملGeometry-aware domain decomposition for T-spline-based manifold modeling
This paper presents a new and effective method to construct manifold T-splines of complicated topology/geometry. The fundamental idea of our novel approach is the geometry-aware object segmentation, by which an arbitrarily complicated surface model can be decomposed into a group of disjoint components that comprise branches, handles, and base patches. Such a domain decomposition simplifies obje...
متن کاملModeling Surfaces of Arbitrary Topology using Manifolds1
We describe an extension of B-splines to surfaces of arbitrary topology, including arbitrary boundaries. The technique inherits many of the properties of B-splines: local control, a compact representation, and guaranteed continuity of arbitrary degree. The surface is specified using a polyhedral control mesh instead of a rectangular one; the resulting surface approximates the polyhedral mesh mu...
متن کاملMultiple point of self-transverse immesions of certain manifolds
In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...
متن کاملA unified subdivision approach for multi-dimensional non-manifold modeling
This paper presents a new unified subdivision scheme that is defined over a k-simplicial complex in n-D space with k ≤ 3. We first present a series of definitions to facilitate topological inquiries during the subdivision process. The scheme is derived from the double (k + 1)-directional box splines over k-simplicial domains. Thus, it guarantees a certain level of smoothness in the limit on a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer-Aided Design
دوره 40 شماره
صفحات -
تاریخ انتشار 2008